
26.Rotary_Encoder

Introduction
A rotary encoder is an electro-mechanical device that converts the angular position or

motion of a shaft or axle to analog or digital code. Rotary encoders are usually placed

at the side which is perpendicular to the shaft. They act as sensors for detecting angle,

speed, length, position, and acceleration in automation field.

Hardware Required
 1 * Raspberry Pi

 1 * Breadboard

 Several Jumper Wires

 1 * Rotary Encoder Module

 1 * T-Extension Board

 1 * 40-pin Cable

Principle
A rotary encoder is a type of position sensor which is used for determining the

angular position of a rotating shaft. It generates an electrical signal, either analog or

digital, according to the rotational movement.

There are many different types of rotary encoders which are classified by either

Output Signal or Sensing Technology. The particular rotary encoder that we will use

in this tutorial is an incremental rotary encoder and it’s the simplest position sensor to

measure rotation.

This rotary encoder is also known as quadrature encoder or relative rotary encoder

and its output is a series of square wave pulses.

It shows that if output 1 is high and output 2 is high, then the switch rotates clockwise;

if output 1 is high and output 2 is low, then the switch rotates counterclockwise. As a

result, during SCM programming, if output 1 is high, then you can tell whether the

rotary encoder rotates left or right as long as you know the state of output 2.

26.Rotary_Encoder

It is summarized by using oscilloscope to observe the output waveform of CLK and

DT and operating the rotary encoder. You can try yourself.

Experimental Procedures

Step 1: Build the circuit

Raspberry Pi T-Cobbler Rotary Encoder Module

GPIO0 GPIO17 CLK

GPIO1 GPIO18 DT

GPIO2 GPIO27 SW

5V 5V0 VCC

GND GND GND

26.Rotary_Encoder

For C Language Users

Step 2: Open the code file.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/C/26.Rotary_Encoder

Step 3: Compile the code.

gcc 26.Rotary_Encoder.c -o Rotary_Encoder.out -lwiringPi

Step 4: Run the executable file above.

sudo ./Rotary_Encoder.out

Code

#include <stdio.h>

#include <string.h>

#include <errno.h>

#include <stdlib.h>

26.Rotary_Encoder

#include <wiringPi.h>

#define RoAPin 0 //clk

#define RoBPin 1 //dt

#define SWPin 2 //sw

static volatile int globalCounter = 0 ;

unsigned char flag;

unsigned char Last_RoB_Status;

unsigned char Current_RoB_Status;

void btnISR(void)

{

globalCounter = 0;

}

void rotaryDeal(void)

{

Last_RoB_Status = digitalRead(RoBPin);

while(!digitalRead(RoAPin)){

Current_RoB_Status = digitalRead(RoBPin);

flag = 1;

}

if(flag == 1){

flag = 0;

if((Last_RoB_Status == 0)&&(Current_RoB_Status == 1)){

26.Rotary_Encoder

globalCounter ++;

}

if((Last_RoB_Status == 1)&&(Current_RoB_Status == 0)){

globalCounter --;

}

}

}

int main(void)

{

if(wiringPiSetup() < 0){

fprintf(stderr, "Unable to setup wiringPi:%s\n",strerror(errno));

return 1;

}

pinMode(SWPin, INPUT);

pinMode(RoAPin, INPUT);

pinMode(RoBPin, INPUT);

pullUpDnControl(SWPin, PUD_UP);

if(wiringPiISR(SWPin, INT_EDGE_FALLING, &btnISR) < 0){

fprintf(stderr, "Unable to init ISR\n",strerror(errno));

return 1;

}

int tmp = 0;

while(1){

26.Rotary_Encoder

rotaryDeal();

if (tmp != globalCounter){

printf("%d\n", globalCounter);

tmp = globalCounter;

}

}

return 0;

}

For Python Language Users

Step 2: Open the code file.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/Python

Step 3: Run.

sudo python3 26.Rotary_Encoder.py

Now rotate the shaft of the rotary encoder, and the value printed on the screen will

change. Rotate the rotary encoder clockwise, the value will increase; Rotate it

counterclockwise, the value will decrease; Press the rotary encoder, the value will be

reset to 0.

Code

The code here is for Python3, if you need for Python2, please open the code with the

suffix py2 in the attachment.

#!/usr/bin/env python3

import RPi.GPIO as GPIO

import time

RoAPin = 11 # CLK Pin

RoBPin = 12 # DT Pin

BtnPin = 13 # Button Pin

26.Rotary_Encoder

globalCounter = 0

flag = 0

Last_RoB_Status = 0

Current_RoB_Status = 0

def setup():

GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location

GPIO.setup(RoAPin, GPIO.IN) # input mode

GPIO.setup(RoBPin, GPIO.IN)

GPIO.setup(BtnPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def rotaryDeal():

global flag

global Last_RoB_Status

global Current_RoB_Status

global globalCounter

Last_RoB_Status = GPIO.input(RoBPin)

while(not GPIO.input(RoAPin)):

Current_RoB_Status = GPIO.input(RoBPin)

flag = 1

if flag == 1:

flag = 0

if (Last_RoB_Status == 0) and (Current_RoB_Status == 1):

globalCounter = globalCounter + 1

if (Last_RoB_Status == 1) and (Current_RoB_Status == 0):

globalCounter = globalCounter - 1

26.Rotary_Encoder

def btnISR(channel):

global globalCounter

globalCounter = 0

def loop():

global globalCounter

tmp = 0 # Rotary Temperary

GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=btnISR)

while True:

rotaryDeal()

if tmp != globalCounter:

print ('globalCounter = %d'% globalCounter)

tmp = globalCounter

def destroy():

GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here

setup()

try:

loop()

except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program

destroy() will be executed.

destroy()

Phenomenon Picture

26.Rotary_Encoder

	Introduction
	Hardware Required
	Principle
	cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starte
	For Python Language Users
	Step 2: Open the code file.
	Step 3: Run.
	Code
	 destroy()
	Phenomenon Picture

