
3.Button

Introduction
In this lesson, you will learn how to use push button with digital inputs to turn an

LED on and off.

Hardware Required
 1 * Raspberry Pi

 1 * T-Extension Board

 1 * LED

 1 * Button

 1 * 40-pin Cable

 Several Jumper Wires

 1 * Breadboard

 1 * Resistor(10KΩ)

 1 * Resistor(220Ω)

Principle

Button

Buttons are a common component used to control electronic devices. They are usually

used as switches to connect or disconnect circuits. Although buttons come in a variety

of sizes and shapes, the one used here is a6mmmini-button as shown in the following

pictures. Pins pointed out by the arrows of same color are meant to be connected.

Schematic Diagram
Use a normally open button as the input of Raspberry Pi, the connection is shown in

the schematic diagram below. When the button is pressed, the GPIO18 will turn into

low level (0V). We can detect the state of the GPIO18 through programming. That is,

if the GPIO18 turns into low level, it means the button is pressed. You can run the

corresponding code when the button is pressed, and then the LED will light up.



3.Button

T-Board Name physical wiringPi BCM

GPIO17 Pin 11 0 17

GPIO18 Pin 12 1 18

Experimental Procedures

Step 1: Build the circuit.

For C Language Users

Step 2:Open the code file.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/C/3.Button

Note: Change directory to the path of the code in this experiment via cd.



3.Button

Step 3: Compile the code.

gcc 3.Button.c -o Button.out -lwiringPi

Step 4: Run the executable file .

sudo ./Button.out

After the code runs, press the button, the LED lights up; otherwise, turns off.

Code

#include <wiringPi.h>

#include <stdio.h>

#define LedPin 0

#define ButtonPin 1

int main(void){

// When initialize wiring failed, print message to screen

if(wiringPiSetup() == -1){

printf("setup wiringPi failed !");

return 1;

}

pinMode(LedPin, OUTPUT);

pinMode(ButtonPin, INPUT);

// Pull up to 3.3V,make GPIO1 a stable level

pullUpDnControl(ButtonPin, PUD_UP);

digitalWrite(LedPin, HIGH);

while(1){

// Indicate that button has pressed down



3.Button

if(digitalRead(ButtonPin) == 0){

// Led on

digitalWrite(LedPin, LOW);

// printf("...LED on\n");

}

else{

// Led off

digitalWrite(LedPin, HIGH);

// printf("LED off...\n");

}

}

return 0;

}

Code Explanation

#define LedPin 0

Pin GPIO17 in the T_Extension Board is equal to the GPIO0 in the wiringPi.

#define ButtonPin 1

ButtonPin is connected to GPIO1.

pinMode(LedPin, OUTPUT);

Set LedPin as output to assign value to it.

pinMode(ButtonPin, INPUT);

Set ButtonPin as input to read the value of ButtonPin.

pullUpDnControl(ButtonPin, PUD_UP);

Set the ButtonPin as pull-up input. When the button is not pressed, the I/O port is

3.3V. When the button is pressed, the I/O port connects to GND (OV). You can

judge the button status by reading the level value of the I/O port.

while(1){

// Indicate that button has pressed down

if(digitalRead(ButtonPin) == 0){



3.Button

// Led on

digitalWrite(LedPin, LOW);

// printf("...LED on\n");

}

else{

// Led off

digitalWrite(LedPin, HIGH);

// printf("LED off...\n");

}

if (digitalRead (ButtonPin) == 0: check whether the button has been pressed.

Execute digitalWrite(LedPin, LOW) when button is pressed to light up LED.

For Python Language Users

Step 2: Open the code file.

cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starter_Kit/Python

Step 3: Run the code.

sudo python3 3.Button.py

Now, press the button, and the LED will light up; press the button again, and the LED

will go out. At the same time, the state of the LED will be printed on the screen.

Code

The code here is for Python3, if you need for Python2, please open the code with the

suffix py2 in the attachment.

#!/usr/bin/python3

import RPi.GPIO as GPIO

import time

# Set GPIO17 as LED pin

LedPin = 17

# Set GPIO18 as button pin



3.Button

BtnPin = 18

# Set Led status to True(OFF)

Led_status = True

# Define a setup function for some setup

def setup():

# Set the GPIO modes to BCM Numbering

GPIO.setmode(GPIO.BCM)

# Set LedPin's mode to output,

# and initial level to high (3.3v)

GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)

# Set BtnPin's mode to input,

# and pull up to high (3.3V)

GPIO.setup(BtnPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

# Set up a falling detect on BtnPin,

# and callback function to swLed

GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=swLed)

# Define a callback function for button callback

def swLed(ev=None):

global Led_status

# Switch led status(on-->off; off-->on)

Led_status = not Led_status

GPIO.output(LedPin, Led_status)

#if Led_status:

# print 'LED OFF...'

#else:

# print '...LED ON'



3.Button

# Define a main function for main process

def main():

while True:

# Don't do anything.

time.sleep(1)

# Define a destroy function for clean up everything after

# the script finished

def destroy():

# Turn off LED

GPIO.output(LedPin, GPIO.HIGH)

# Release resource

GPIO.cleanup()

# If run this script directly, do:

if __name__ == '__main__':

setup()

try:

main()

# When 'Ctrl+C' is pressed, the program

# destroy() will be executed.

except KeyboardInterrupt:

destroy()

Code Explanation

LedPin = 17

Set GPIO17 as LED pin

BtnPin = 18

Set GPIO18 as button pin



3.Button

GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=swLed)

Set up a falling detect on BtnPin, and then when the value of BtnPin changes from

a high level to a low level, it means that the button is pressed. The next step is

calling the function, swled.

def swLed(ev=None):

global Led_status

# Switch led status(on-->off; off-->on)

Led_status = not Led_status

GPIO.output(LedPin, Led_status)

Define a callback function as button callback. When the button is pressed at the first

time,and the condition, not Led_status is false, GPIO.output() function is called to

light up the LED. As the button is pressed once again, the state of LED will be

converted from false to true, thus the LED will turn off.

Phenomenon Picture


	Introduction
	In this lesson, you will learn how to use push but
	Hardware Required
	Principle
	Buttons are a common component used to control ele
	Use a normally open button as the input of Raspber
	cd /home/pi/REXQualis_Raspberry_Pi_Complete_Starte
	Note: Change directory to the path of the code in 
	For Python Language Users

	Step 2: Open the code file.
	Step 3: Run the code.
	Code
	destroy()
	Phenomenon Picture

