
Introduction to Python

DCLDP Summer Camp 2023
Christiana Chamon Garcia, Ph.D, EIT

Outline
● How programs work
● Comments/whitespace
● print
● Variables
● User input
● Binary
● Arithmetic
● Boolean
● Functions
● Conditionals
● Loops
● Arrays

How does a program work?

https://minecraft.fandom.com/wiki/Tree

Comments

How to comment
● # single-line comment
● """ multi-line comment """

Whitespace

Whitespace
● Indentation is required for functions,

loops, conditionals, and other blocks.
● Empty lines are not required, but they

are highly useful for separating sections
of code.

Python example with whitespace
#this example contains whitespace

print("Good morning world")

print("and all who inhabit it!")

C example without whitespace
#this example doesn’t contain whitespace
print("Good morning world")
print("and all who inhabit it!")

https://twitter.com/Kieraplease/status/822101022227173376

print

print
● The print() function prints a specified

value at the output window.
● The value can be any literally anything

as long as it follows valid Python
syntax.

Examples
● print(“John is awesome”) //valid

○ “John is awesome” is a string
● print(1) //valid
● print(x);

○ Is x a defined int variable? If so, it’s valid;
otherwise, it’s invalid.

● print(‘a’); //valid
○ ‘a’ is a character

● print(“I can’t escape”) //valid
● print(“I\’ve escaped”) //valid

String syntax
● In the character example, we used

apostrophes.
● In the string example, we used

quotation marks.
● Characters can use apostrophes or

quotation marks.
● Because we use apostrophes for

characters, we typically use an escape
sequence “\”

Char vs. string example
c = 'c'
print(c)
print("\n") #adding a newline to separate
the two outputs
e = "eat"
print(e)

Variables

Bigger picture

https://www.homestratosphere.com/types-of-buckets/

Identifiers
● Variable names can start with letters.
● Variable names can contain letters,

numbers, and underscores.
● Variable names cannot start with

numbers or punctuation.
● Variable names cannot be built-in

functions.
● The camel method is the best practice

for naming variables.

Examples
● DCLDP_2023 //valid
● 101programming //invalid
● drChamon //valid, camel
● _camprulez //valid
● int //invalid

Assignments
● Values can be assigned to variables.
● Variables must always be on the left

side.
● Values must always be on the right

side.

Examples
● x = 5
● y = 7
● z = x + y

Examples in Python
x = 5
y = 7
z = x+y
print(x,y,z)

Analogy time!!!

https://www.umassmed.edu/hr/immigration_services/WelcomeKit/Living-Expenses-and-Other-Resources/banking/
https://www.ccudigitalbanking.com/mstinc/sdp/help/en/index_nbpw_npr_nfw.html

type() function
● The type() function tells us the type of a

variable.
● In Python, any time a variable is

assigned, its type is automatically
assigned.

User Input

User input
● As shown, we can output (print) the

contents of a variable to the window.
● We can also input data to a variable.
● The input() function allows the user to

store data into a variable mid-program.

User input example
print("Enter a number: ")
numin = input()
print("Your number is: ", numin)
print("Enter a letter, word, or sentence: ")
stringin = input()
print("Your string is: ", stringin)

Binary

Base 2
● Most humans speak in Base 10.
● Computers speak in Base 2, or binary.
● Any command you give to your

computer will be translated into binary.
● Binary strings are made up of bits.

Some binary examples
● 22: 10
● 42: 100
● 52: 101
● 72: 111
● 422: 101010
● 642: 1000000

Two’s Complement
● Converting binary numbers to their

negative representation is easy as
1-2-3
1. Flip all the bits (1s become 0s and vice

versa)
2. Add 1
3. Pat yourself on the back

● Example: 101010 (42) becomes
010110 (-42)

Two’s Complement
● Here’s some supplementary

information.
● When in doubt, ask a TA! :)

https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html

Unsigned vs. signed bits
● Here’s some supplementary

information.
● When in doubt, ask a TA! :)

https://www.thoughtco.com/definition-of-unsigned-958174

In-class activity
● Let’s convert a few numbers to binary and

a few binary numbers back to Base 10!
● We’ll use the mod-2 method to convert to

binary.
● We’ll use the powers-of-2 and

double-dabble methods to convert to Base
10.

● We’ll then take its negative and use Two’s
Complement to represent it in binary.

In-class challenge
1. Pick a number (Base 10)
2. Convert it to binary
3. Using any method you’d like, convert it

back to Base 10
4. Use Two’s Complement to give the

negative binary representation.

Arithmetic

Standard operators
● Addition: +
● Subtraction: -
● Multiplication: *
● Division: /
● Modulo: %

Order of operations
1. ()
2. *, /, or % from left to right
3. + or - from left to right

Try this code!
x = (4 + 5)
y = 2 * 4
z = x % y
print(z)

Bitwise operators
● AND: &
● OR: |
● XOR: ^
● NOT: ~
● Shift-left: <<
● Shift-right: >>

NOTE: bitwise operators can only be used
on char and int variables.

Bitwise XOR
● In Python, we have a bitwise XOR: ^
● Python does not have a built-in logical

XOR
○ A function can be created

● Alternatively, the not-equal logical
operator !=.

Bitwise shifting application
● If the data from a file is a 16b number,

but the transfer protocol works only in
8b, we use bitwise shifting to combine
the data.

● This is a quick-and-easy fix.

Try this code!
a = 4 #100
b = 3 #011
c = a & b #play with bitwise operators
print(c)

More on bitwise operators
● Bitwise operators work directly with binary

numbers.
● In order to understand bitwise operation,

one must understand binary numbers.
● Conversion from decimal to binary can be

done via modulus-2 and divide-by-2.
● Conversion from binary to decimal can be

done via adding powers of 2 or
double-dabble.

In-class activity
● Challenge: what will be the resultant of each

bitwise operation?
● Reminder: !0=1, 1&0=0, 1|0=1, 1^1=0
● Hint: convert all of the values to binary first!
● Please show your process.
1. !42
2. 4&3
3. 5|2
4. 7^4
5. 5<<1
6. 64>>3

Boolean

Values
● true (logical 1)
● false (logical 0)

Logical Operators
● Greater than: >
● Less than: <
● Equal to: ==
● Not equal to: !=
● Greater than or equal to: >=
● Less than or equal to: <=
● AND: &&
● OR: ||
● NOT: !

Try this code!
a = 4
b = 3
c = a > b
print(c)

Functions

Function overview
● The purpose of a function is to replace

the act of repeating the same lines.
● Instead of copying and pasting the

same chunk of code for different
sequences, the user can define a
function and use it whenever needed.

● Functions make it easier for the user to
debug!

Example
Function: switching lanes

1. Raise/lower the turning signal lever
2. Check to see if the path is clear
3. If it’s clear, angle the steering wheel
4. Once you’ve switched lanes,

straighten the steering wheel

Example

IMAGE LINK

https://www.wikihow.com/Use-Your-Turn-Signal

Example
Function: turn 90 degrees (clockwise)

1. pivot your right foot to point to the
right of you

2. pick up your left foot
3. turn your body in the

direction of which your
right foot is pointing

4. put down your left foot
IMAGE LINK

https://www.vectorstock.com/royalty-free-vector/rotate-element-square-and-arrow-90-degree-angle-vector-29433568

Verdict
● Making those examples into a single

function and just referencing them when
you need them saves you many lines of
code.

● It is ill-advised to write a program that
doesn’t function! :)

Built-In Functions

Examples
● ceil() rounds up
● floor() rounds down
● sqrt() returns the square root
● pow() returns the power
● abs() returns the absolute value
● randint() generates a random number

NOTE: almost all of these functions only work
if you import the appropriate library (i.e. math,
random).

Try this code!
import math
import random

a = 1.5
b = 2.7
c = 9

x = math.ceil(a)
y = math.floor(b)
z = math.sqrt(c)

print(a,x)
print(b,y)
print(c,z)

q = math.pow(z,2)
print(z,q)

r = -5
s = abs(r)
print(r,s)

min_val = 1
max_val = 100
t = random.randint(min_val,max_val)
print(t)

User-Defined Functions

Product of two numbers
def productNumbers(a, b):
 product = a*b
 return product

x = 3
y = 4
z = productNumbers(x,y)
print("product = ", z)

Adding 5
def add5(a):
 return a+5

x = 3
z = add5(x)
print(z)

Multiplying by 10
def x10(a):
 return a*10

x = 10
print(x10(x))

Alphabet ranking
def arank(c1, c2):
 return c1>c2

a1 = 'a'
a2 = 'b'
print(arank(a1,a2))

Add “ and throw it all away”
def tiaa(x):
 return x + " and throw it all away"

a1 = "Do your homework"
print(tiaa(a1))

IMAGE LINK

https://www.indiewire.com/2020/07/stanley-the-office-raise-money-spinoff-1234571427/

Convert decimal to binary
import math

def d2b(dec):
 bin = 0
 mod = 0
 temp = 1

 while (dec!=0):
 mod = int(dec)%2
 dec /= 2
 bin = bin + mod*temp
 temp *= 10
 return bin

decimalnum = 42
print(d2b(decimalnum))

In-class Activity
● Write a function that takes in two

integers as arguments and returns the
quotient

● Additional challenge: use two numbers
generated by randint()

Conditionals

if, else if, else

LINK TO IMAGE

https://www.educba.com/else-if-in-c-plus-plus/

Try this code!
a = 4
b = 3

if (a > b):
 print("This is the output of the if-statement")
elif (a < b):
 printf("This is the output of the else if-statement")
else:
 printf("This is the output of the else statement")

Activity
● Create a grading system using

conditionals (e.g. if >90, A).
● At the output, show the grade and the

associated letter.

Loops

How loops work

LINK TO IMAGE

https://beginnersbook.com/2017/08/cpp-for-loop/

Loop purpose

LINK TO IMAGE

https://beginnersbook.com/2017/08/cpp-for-loop/

Principles of loops
1. Initialization (refer to variables section)
2. Conditional (refer to conditionals

section)

Loop Types

Loop types
● for loops: “For this initialization, keep

doing this as long as this condition is
met.”

● while loops: “While this condition is met,
keep doing this.”

NOTE: Python doesn’t have an inherent
“do while” loop.

LINK TO IMAGE

https://khalidabuhakmeh.com/coding-the-road-runner-while-loop-meme

LINK TO IMAGE

https://twitter.com/code_memez/status/1336604129154670592?lang=zh-Hant

Try this code!
for a in range(2):
 print(a);

print("\n")

b = 2
while (b>0):
 print(b)
 b-=1

Exit Statements

break and continue statements
● The break statement takes the user out

of the loop.
● The continue statement takes the user

to top of the loop, ignoring what’s below
it.

LINK TO IMAGE

https://www.reddit.com/r/ProgrammerHumor/comments/f3gezb/damn_it_exit_exit_exit/

Try this code!
for a in range(5):
 if (a==1):
 continue
 elif (a==4):
 break
 print(a)

Arrays

Array basics
● The Oxford dictionary defines an array

as an impressive display or range of a
particular type of thing.

● An array can be of any data type and
have as many elements as the user
wishes to define.

● 1D arrays are also called vectors.

Example: x = [4,7,8,3,1]
●

Try this code!
x = [4,7,8,3,1]
for i in range(len(x)):
 print(i,x[i])

Array Manipulation

Referencing elements
●

Try this code!
x = [4,7,8,3,1]
for i in range(len(x)):
 print(i,x[i])

refnum = 2
print(refnum, x[refnum])

Modifying elements
● A user can also modify an element in a

vector, replacing the previous element
with a new element.

● One way to accomplish element
modification is to reference the vector
index and assign it a new value.

Try this code!
print("Old array")
x = [4,7,8,3,1]
for i in range(len(x)):
 print(i,x[i])
print("\n")
refnum = 2
x[refnum] = 5
print("New array")
for i in range(len(x)):
 print(i,x[i])

Strings

Character arrays
● In programming, a string is an array of

characters.
● Words are examples of strings, and their

letters are examples of characters.
● This sentence is also an example of a string.
● In Python, you can select the range and

occurrence by adding [min:max:occurrence] at
the end of the variable.
○ Not specifying a min/max assumes beginning/end
○ Not specifying an occurrence assumes “every”

Try this code!
x = "Hello World"
for i in range(len(x)):
 print(i,x[i])

Try this code!
x = "Hello World"
print(x[2:5:1]) #play with this

Reversing a string
x = "Hello World"
print(x)
print(x [::-1])

In-class activity
● Write a Python program to print every

other letter in a string.
● Hint: use [::2]
● Additional challenge: put it in a function,

with the string as the argument.

Matrices

What is a matrix?
● The Oxford dictionary defines an array

as an impressive display or range of a
particular type of thing.

● An array can be of any data type and
have as many elements as the user
wishes to define.

● 1D arrays are also called vectors.

IMAGE LINK

https://www.theguardian.com/film/2019/jan/21/from-red-pills-to-red-white-and-blue-brexit-how-the-matrix-shaped-our-reality

2D arrays
● A matrix is a 2D array.
● Spreadsheets and tables are examples

of matrices.

IMAGE LINK

https://arxiv.org/pdf/2112.09052.pdf

2D arrays
● If you know how to create, access, and

traverse (CAT) 1D arrays, you know
how to CAT arrays of any dimension.

● CAT 2D arrays (matrices) is nothing
more than CAT 1D arrays with an
added index.

● CAT 3D arrays is nothing more than
CAT 1D arrays with two added indices.

Matrix initialization
a = [[1,2],[3,4]]
print(a[0][0]) #play with this

Activity: tabulating grades!
● Write a Python program that displays a

list of assignment names and their
grades.

● Additional challenge: calculate the
averages of each type of assignment.

NOTE: in Python, arrays aren’t required to
be of a homogeneous data type.

Sample code
assignments =
[["Hw1",95],["Hw2",85],["Hw3",90]]
print(assignments[1]) #will print just the
one row

“If you find yourself in a hole, the first
thing to do is stop digging.” ~Texas

Bix Bender

