
Introduction to Python
Programming

https://raspberrypicamp.rocks

Beginning Python 1

What this part of camp is about

• What we're saying:
• "Learning how to program in Python"

• What we're teaching you:
• "Learn how to solve problems (and by the way, we'll use Python)"

• What you'll take away from Camp:
• A working foundation of Python and electronics, and enough practice to grow

your skills going forward

Beginning Python 2

Beginning Python 3

General Information

• Unlike C/C++ or Java, Python statements do not end in a semicolon

• In Python, indentation is the way you indicate the scope of a
conditional, function, etc.

• Look, no braces!

• Python is interpretive, meaning you don’t have to write programs.

• You can just enter statements into the Python environment and
they’ll execute

• For the most part, we’ll be writing programs

Beginning Python 4

The Python Shell
• Because Python is interpretive, you can do simple things with the

shell

• In the graphical shell on Linux, double-click on Terminal

• Start by creating a python directory in your home directory
mkdir ~/python ⏎

• After making the directory, type python ⏎

• You should have a >>> prompt

• Type in:

 print("hello, world") ⏎

• You have written your first Python program!

• Exit the shell by typing exit() ⏎

Beginning Python 5

Idle: The Python IDE

• The shell is good for simple calculations but not for real programming

• For programming, we’ll use Idle3

• Go to your shell (command line) and enter sudo apt install idle3⏎ It
will install the app in your Programming menu. Start the Idle3 (using
Python 3.11) app.

• Idle will give you access to a shell (where each statement executes as
soon as you type it and press ⏎ but also to an IDE (integrated
development environment) for writing and saving programs

Beginning Python 6

Python Modules

• In practice, only the simplest programs are run in the shell

• You can create a module (complete program) by going to the

 File->New File menu option

• This brings up a text editor that lets you create a Python program and
run it

• Write your first "Hello World!" program thus:

print("Hello, World!")

Beginning Python 7

Python Modules

• Press F5 (or Run -> Run Module from the menu)

• It will ask you to save the file before you run it

• Save it to your python directory as HelloWorld.py

• If you don't provide the .py extension, IDLE will automatically do it

• If you want to run it outside of the development environment, go into
your terminal window and simply type:

python HelloWorld.py ⏎

• Remember, Linux is case sensitive!

Beginning Python 8

Variables

• In every computer language, a variable is the name of a memory location

• Python is weakly typed (that means it tries to figure out what kind of
information a variable contains)

• You can store numbers, text (called strings) and lots of more complicated things
in a variable.

• Variable names begin with a letter or an underscore and can contain letters,
numbers, and underscores

• Python has reserved words that you can’t use as variable names. You can think
of reserved words as predefined words in the Python language...if you used a
variable with the same name as a predefined word in its language, Python
would get confused!

Beginning Python 9

Variables

• At the >>> prompt, do the following:

x=5 ⏎

type(x) ⏎

x="this is text" ⏎

type(x) ⏎

x=5.0 ⏎

type(x) ⏎

Beginning Python 10

Printing

• You’ve already seen the print statement

• You can print numbers with your own customized formatting (how
many decimal places, for example) or with default formatting

Beginning Python 11

Comments

• All your code should contain comments that describe what it does

• In Python, lines beginning with a # sign are comment lines

• On your keyboards, this is over the 3️⃣ key

You can also have comments on the same line as a statement

This entire line is a comment

dozen = 12 # 12 in a dozen!

Beginning Python 12

Operators

• Arithmetic operators we will use:
• + - * / addition, subtraction/negation, multiplication, division

• % modulus, a.k.a. remainder

• ** exponentiation

• precedence: Order in which operations are computed.
• * / % ** have a higher precedence than + -

1+3*4 is 13

• Parentheses can be used to force a certain order of evaluation.

(1+3)*4 is 16

Beginning Python 13

Expressions

• When integers and reals are mixed, the result is a real number.
• Example: 1/2.0 is 0.5

• The conversion occurs on a per-operator basis.
• 7 / 3 * 1.2 + 3 / 2
• 2 * 1.2 + 3 / 2
• 2.4 + 3 / 2
• 2.4 + 1
• 3.4

• What do you notice above, when an integer is divided by an integer?
 ANS: If there's a remainder the result is truncated (or rounded down)

Beginning Python 14

Math Functions
• Use this at the top of your program: from math import *

Beginning Python 15

Relational Operators

• Many logical expressions use relational operators:

Beginning Python 16

Logical Operators

• These operators return true or false

Beginning Python 17

The if Statement

• Syntax:

if <condition>:

 <statements>

x = 5

if x > 4:

 print("x is greater than 4")

print("Now I'm outside the if")

Beginning Python 18

The if Statement
• The colon is required for the if

• Note that all statements indented one level in from the if are within
it's scope:

x = 5

if x > 4:

 print("x is greater than 4")

 print("This is inside the if")

print("All done.")

Beginning Python 19

The if/else Statement

if <condition>:

 <statements>

else:

 <statements>

• Note the colon following the else

• This works exactly the way you would expect

Beginning Python 20

The for Loop
• Syntax:

 for variableName in groupOfValues:

 <statements>

• variableName gives a name to each value, so you can refer to it in the
statements.

• groupOfValues can be a range of integers, specified with the range
function.

• Example:

for x in range(1, 6):

 print x, "squared is", x * x

Beginning Python 21

Range

• The range function specifies a range of integers:

range(start, stop) - the integers between start (inclusive)

 and stop (exclusive)

• It can also accept a third value specifying the change between values.

range(start, stop, step) - the integers between start (inclusive)

 and stop (exclusive) by step

Beginning Python 22

The while Loop
• Executes a group of statements as long as a condition is True.

• Good for indefinite loops (repeat an unknown number of times)

• Syntax:

 while <condition>:

 <statements>

• Example:

number = 1

while number < 200:

 print (number)

 number = number * 2

Beginning Python 23

Exercise

• Write a Python program to compute and display the first 16 powers
of 2, starting with 1 (hint: 2**1 = 2)

Beginning Python 24

Exercise

• Write a Python program to compute and display the first 16 powers of
2, starting with 1 (hint: 2**1 = 2)

• Do this in the Python shell

for x in range(1,17):

 print (2**x)

Beginning Python 25

Strings
• String: A sequence of text characters in a program.

• Strings start and end with quotation mark " or apostrophe '
characters.

• Examples:
"hello"
"This is a string"
"This, too, is a string. It can be very long!"

• A string (enclosed by ") may not span across multiple lines or contain
a " character inside it.

"This is not
a legal String."

"This is not a "legal" String either."

'But this is a "legal" String!'
Beginning Python 26

Letting user enter a string into a program

• A user often must be able to type information into a running program
• Use the input() statement. You may enter a string inside the

parentheses to give the user directions

x = input("Enter your name:")

print(x)

y = input()

print(y)

IMPORTANT: No matter what the user enters, Python stores it as a string!

Beginning Python 27

Strings

• A string can represent characters by preceding them with a backslash.
• \t tab character

• \n new line character

• \" quotation mark character

• \\ backslash character

• Example: "Hello\tthere\nHow are you?"

Beginning Python 28

Indexing Strings

• You can use square brackets to index a string:

show = "Dancing With the Stars"

print(show, " starts with ", show[0])

Beginning Python 29

String Functions

• len(string) - number of characters in a string

• str.lower(string) - lowercase version of a string

• str.upper(string) - uppercase version of a string

• str.isalpha(string) - True if the string has only alpha chars

• Many others: split, replace, find, format, etc.

• Note the “dot” notation: These are static methods.

Beginning Python 30

Other Built-in Types

• lists (also tuples, sets, and dictionaries)

• They all allow you to group more than one item of data together
under one name

• You can also search them

Beginning Python 32

Lists

• Changeable sequences of data

• Lists are created by using square brackets:

breakfast = [“coffee”, “tea”, “toast”, “egg”]

• You can add to a list:

breakfast.append(“waffles”)

breakfast.extend([“cereal”, “juice”])

Beginning Python 34

Writing Programs

• If you haven't already, open up the Idle IDE

• The first line of your code should be this: #!/usr/bin/python

• Write the same code you wrote for the exercise of powers of 2 using
the IDE’s editor

• Press the F5 key to run the program

• It will ask you to save the program. Give it a name like PowersOf2.py

• The program will run in a Python shell from the IDE

• If there are errors, the shell will tell you

Beginning Python 37

Running python code from the shell

• The reason we added to the first line is so we can execute the
program by typing its name

• Open a shell and change to the ~/python directory

• You need to change the permissions on the file you just created
(PowersOf2.py). Do it like this: chmod 755 PowersOf2.py⏎

• (Do you remember what permissions you just set?)

• From the shell, execute your program by typing ./PowersOf2.py⏎

Beginning Python 38

Writing Functions

• Define a function:

def <function name>(<parameter list>)

• The function body is indented one level:

def computeSquare(x)

 return x * x

Anything at this level is not part of the function

Beginning Python 39

Error Handling

• Use try/except blocks, similar to try/catch:

fridge_contents = {“egg”:8, “mushroom”:20,
“pepper”:3, “cheese”:2,

“tomato”:4, “milk”:13}

try:

 if fridge_contents[“orange juice”] > 3:

 print(“Sure, let’s have some juice!”)

except KeyError:

 print(“Awww, there is no orange juice.”)

Beginning Python 40

Error Handling

• Note that you must specify the type of error

• Looking for a key in a dictionary that doesn’t exist is an error

• Another useful error to know about:

try:

 sock = BluetoothSocket(RFCOMM)

 sock.connect((bd_addr, port))

except BluetoothError as bt

 Print(“Cannot connect to host: “ + str(bt))

Beginning Python 41

Using the GPIO Pins

• The Raspberry Pi has a 40-pin header, many of which are general-
purpose I/O pins

• Include the library:

import RPi.GPIO as GPIO

• Set up to use the pins:

GPIO.setmode(GPIO.BOARD)

Beginning Python 42

Using the GPIO Pins

• The GPIO.BCM option means that you are referring to the pins by the
"Broadcom SOC channel" number, these are the numbers after
"GPIO" in the green rectangles around the outside of the diagram:

Beginning Python 43

Using the GPIO Pins

• This is from my home-control code:

LAMP = 22

MOTION = 23

GPIO.setup(LAMP, GPIO.OUT) # For turning on the lamp

GPIO.setup(MOTION, GPIO.IN) # For reading the motion sensor

• Like the Arduino, we must set up the pins for input or output

Beginning Python 44

Using the GPIO Pins

• Reading from a GPIO pin:

If we detect motion, print that.

if GPIO.input(MOTION):

 print("Motion detected")

Beginning Python 45

Using the GPIO Pins

• Output to GPIO:

 if cmd=='LAMPON':

 cmdlist["LAMPSTATUS"] = True;

 GPIO.output(LAMP, True) # turn on the light

Beginning Python 46

Programming Exercise

• Write a Python program that blinks an LED at a rate of 1 second on,
one second off

• To do this, you’ll need to use the idle3 environment running as the
superuser:

sudo idle3

Beginning Python 47

Python File I/O

• You can read and write text files in Python much as you can in other
languages, and with a similar syntax.

• To open a file for reading:

try:

 configFile = open(configName, "r")

except IOError as err:

 print(“could not open file: “ + str(err))

Beginning Python 48

Python File I/O

• To read from a file:

while 1:

 line = configFile.readline()

 if len(line) == 0:
 break

Beginning Python 49

Python File I/O

• You can also read all lines from a file into a set, then iterate over the
set:

lines = file.readlines()

for line in lines:

 print(line)

file.close()

Beginning Python 50

Python File I/O

• Writing to a text file

file=open(‘test.txt’,”w”)

file.write(“This is how you create a new text file”)

file.close()

Beginning Python 51

	Slide 1: Introduction to Python Programming
	Slide 2: What this part of camp is about
	Slide 3
	Slide 4: General Information
	Slide 5: The Python Shell
	Slide 6: Idle: The Python IDE
	Slide 7: Python Modules
	Slide 8: Python Modules
	Slide 9: Variables
	Slide 10: Variables
	Slide 11: Printing
	Slide 12: Comments
	Slide 13: Operators
	Slide 14: Expressions
	Slide 15: Math Functions
	Slide 16: Relational Operators
	Slide 17: Logical Operators
	Slide 18: The if Statement
	Slide 19: The if Statement
	Slide 20: The if/else Statement
	Slide 21: The for Loop
	Slide 22: Range
	Slide 23: The while Loop
	Slide 24: Exercise
	Slide 25: Exercise
	Slide 26: Strings
	Slide 27: Letting user enter a string into a program
	Slide 28: Strings
	Slide 29: Indexing Strings
	Slide 30: String Functions
	Slide 32: Other Built-in Types
	Slide 34: Lists
	Slide 37: Writing Programs
	Slide 38: Running python code from the shell
	Slide 39: Writing Functions
	Slide 40: Error Handling
	Slide 41: Error Handling
	Slide 42: Using the GPIO Pins
	Slide 43: Using the GPIO Pins
	Slide 44: Using the GPIO Pins
	Slide 45: Using the GPIO Pins
	Slide 46: Using the GPIO Pins
	Slide 47: Programming Exercise
	Slide 48: Python File I/O
	Slide 49: Python File I/O
	Slide 50: Python File I/O
	Slide 51: Python File I/O

